Random Matrix Theory with an External Source
Resource Information
The work Random Matrix Theory with an External Source represents a distinct intellectual or artistic creation found in European University Institute. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Random Matrix Theory with an External Source
Resource Information
The work Random Matrix Theory with an External Source represents a distinct intellectual or artistic creation found in European University Institute. This resource is a combination of several types including: Work, Language Material, Books.
 Label
 Random Matrix Theory with an External Source
 Statement of responsibility
 by Edouard Brézin, Shinobu Hikami
 Language
 eng
 Summary
 This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.
 Assigning source
 Provided by publisher
 Image bit depth
 0
 Literary form
 non fiction
 Nature of contents
 dictionaries
 Series statement

 SpringerBriefs in Mathematical Physics,
 Springer eBooks
 Springer eBooks.
 Series volume
 19
Context
Context of Random Matrix Theory with an External SourceWork of
No resources found
No enriched resources found
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.eui.eu/resource/iWLC6rBBxA/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/resource/iWLC6rBBxA/">Random Matrix Theory with an External Source</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Work Random Matrix Theory with an External Source
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.eui.eu/resource/iWLC6rBBxA/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/resource/iWLC6rBBxA/">Random Matrix Theory with an External Source</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>