Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Resource Information
The instance Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource) represents a material embodiment of a distinct intellectual or artistic creation found in European University Institute. This resource is a combination of several types including: Instance, Electronic.
The Resource
Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Resource Information
The instance Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource) represents a material embodiment of a distinct intellectual or artistic creation found in European University Institute. This resource is a combination of several types including: Instance, Electronic.
- Label
- Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
- Medium
- electronic resource
- Statement of responsibility
- by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier.
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent.
- Contents
- Cohomological Theory of Crystals over Function Fields and Applications -- On Geometric Iwasawa Theory and Special Values of Zeta Functions -- The Ongoing Binomial Revolution -- Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields -- Curves and Jacobians over Function Fields
- Control code
- 978-3-0348-0853-8
- Dimensions
- unknown
- Extent
- XIV, 337 pages
- File format
- multiple file formats
- Form of item
- electronic
- Governing access note
- Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
- Isbn
- 9783034808538
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia.
- Media type code
-
- c
- Other control number
- 10.1007/978-3-0348-0853-8
- Other physical details
- 1 online resource.
- Quality assurance targets
- absent
- Record ID
- u396254
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)1022030828
Context
Context of Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)Instantiates
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/resource/IH3ftUYQAm4/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/resource/IH3ftUYQAm4/">Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/resource/IH3ftUYQAm4/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/resource/IH3ftUYQAm4/">Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>