The Resource The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)
The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)
Resource Information
The item The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.This item is available to borrow from 1 library branch.
Resource Information
The item The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.
This item is available to borrow from 1 library branch.
- Summary
- This book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of important new problems in index theory. So far, the localization principle has scarcely been covered in journal papers. The present book is intended to fill this gap. Both the general localization principle and its applications to specific problems, old and new, are covered. Concisely and clearly written, this monograph includes numerous figures helping the reader to visualize the material. The Localization Problem in Index Theory of Elliptic Operators will be of interest to researchers as well as graduate and postgraduate students specializing in differential equations and related topics
- Language
- eng
- Extent
- VIII, 117 pages 38 illustrations, 1 illustrations in color.
- Contents
-
- Preface
- Introduction
- 0.1 Basics of Elliptic Theory
- 0.2 Surgery and the Superposition Principle
- 0.3 Examples and Applications
- 0.4 Bibliographical Remarks
- Part I: Superposition Principle
- 1 Superposition Principle for the Relative Index
- 1.1 Collar Spaces
- 1.2 Proper Operators and Fredholm Operators
- 1.3 Superposition Principle
- 2 Superposition Principle for K-Homology
- 2.1 Preliminaries
- 2.2 Fredholm Modules and K-Homology
- 2.3 Superposition Principle
- 2.4 Fredholm Modules and Elliptic Operators
- 3 Superposition Principle for KK-Theory
- 3.1 Preliminaries
- 3.2 Hilbert Modules, Kasparov Modules, and KK
- 3.3 Superposition Principle
- Part II: Examples
- 4 Elliptic Operators on Noncompact Manifolds
- 4.1 Gromov--Lawson Theorem
- 4.2 Bunke Theorem
- 4.3 Roe's Relative Index Construction
- 5 Applications to Boundary Value Problems
- 5.1 Preliminaries
- 5.2 Agranovich--Dynin Theorem
- 5.3 Agranovich Theorem
- 5.4 Bojarski Theorem and Its Generalizations
- 5.5 Boundary Value Problems with Symmetric Conormal Symbol
- 6 Spectral Flow for Families of Dirac Type Operators
- 6.1 Statement of the Problem
- 6.2 Simple Example
- 6.3 Formula for the Spectral Flow
- 6.4 Computation of the Spectral Flow for a Graphene Sheet
- Bibliography
- Isbn
- 9783034805100
- Label
- The Localization Problem in Index Theory of Elliptic Operators
- Title
- The Localization Problem in Index Theory of Elliptic Operators
- Statement of responsibility
- by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin
- Language
- eng
- Summary
- This book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of important new problems in index theory. So far, the localization principle has scarcely been covered in journal papers. The present book is intended to fill this gap. Both the general localization principle and its applications to specific problems, old and new, are covered. Concisely and clearly written, this monograph includes numerous figures helping the reader to visualize the material. The Localization Problem in Index Theory of Elliptic Operators will be of interest to researchers as well as graduate and postgraduate students specializing in differential equations and related topics
- Cataloging source
- IT-FiEUI
- http://library.link/vocab/creatorName
- Nazaikinskii, Vladimir
- Image bit depth
- 0
- Literary form
- non fiction
- http://library.link/vocab/relatedWorkOrContributorName
-
- Schulze, Bert-Wolfgang.
- Sternin, Boris.
- SpringerLink (Online service)
- Series statement
-
- Pseudo-Differential Operators, Theory and Applications
- Springer eBooks
- Series volume
- 10
- http://library.link/vocab/subjectName
-
- Mathematics
- K-theory
- Functional analysis
- Global analysis (Mathematics)
- Differential equations, Partial
- Label
- The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier.
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent.
- Contents
- Preface -- Introduction -- 0.1 Basics of Elliptic Theory -- 0.2 Surgery and the Superposition Principle -- 0.3 Examples and Applications -- 0.4 Bibliographical Remarks -- Part I: Superposition Principle -- 1 Superposition Principle for the Relative Index -- 1.1 Collar Spaces -- 1.2 Proper Operators and Fredholm Operators -- 1.3 Superposition Principle -- 2 Superposition Principle for K-Homology -- 2.1 Preliminaries -- 2.2 Fredholm Modules and K-Homology -- 2.3 Superposition Principle -- 2.4 Fredholm Modules and Elliptic Operators -- 3 Superposition Principle for KK-Theory -- 3.1 Preliminaries -- 3.2 Hilbert Modules, Kasparov Modules, and KK -- 3.3 Superposition Principle -- Part II: Examples -- 4 Elliptic Operators on Noncompact Manifolds -- 4.1 Gromov--Lawson Theorem -- 4.2 Bunke Theorem -- 4.3 Roe's Relative Index Construction -- 5 Applications to Boundary Value Problems -- 5.1 Preliminaries -- 5.2 Agranovich--Dynin Theorem -- 5.3 Agranovich Theorem -- 5.4 Bojarski Theorem and Its Generalizations -- 5.5 Boundary Value Problems with Symmetric Conormal Symbol -- 6 Spectral Flow for Families of Dirac Type Operators -- 6.1 Statement of the Problem -- 6.2 Simple Example -- 6.3 Formula for the Spectral Flow -- 6.4 Computation of the Spectral Flow for a Graphene Sheet -- Bibliography
- Control code
- 978-3-0348-0510-0
- Dimensions
- unknown
- Extent
- VIII, 117 pages 38 illustrations, 1 illustrations in color.
- File format
- multiple file formats
- Form of item
- electronic
- Governing access note
- Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
- Isbn
- 9783034805100
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia.
- Media type code
-
- c
- Other control number
- 10.1007/978-3-0348-0510-0
- Other physical details
- online resource.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)1086520846
- Label
- The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier.
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent.
- Contents
- Preface -- Introduction -- 0.1 Basics of Elliptic Theory -- 0.2 Surgery and the Superposition Principle -- 0.3 Examples and Applications -- 0.4 Bibliographical Remarks -- Part I: Superposition Principle -- 1 Superposition Principle for the Relative Index -- 1.1 Collar Spaces -- 1.2 Proper Operators and Fredholm Operators -- 1.3 Superposition Principle -- 2 Superposition Principle for K-Homology -- 2.1 Preliminaries -- 2.2 Fredholm Modules and K-Homology -- 2.3 Superposition Principle -- 2.4 Fredholm Modules and Elliptic Operators -- 3 Superposition Principle for KK-Theory -- 3.1 Preliminaries -- 3.2 Hilbert Modules, Kasparov Modules, and KK -- 3.3 Superposition Principle -- Part II: Examples -- 4 Elliptic Operators on Noncompact Manifolds -- 4.1 Gromov--Lawson Theorem -- 4.2 Bunke Theorem -- 4.3 Roe's Relative Index Construction -- 5 Applications to Boundary Value Problems -- 5.1 Preliminaries -- 5.2 Agranovich--Dynin Theorem -- 5.3 Agranovich Theorem -- 5.4 Bojarski Theorem and Its Generalizations -- 5.5 Boundary Value Problems with Symmetric Conormal Symbol -- 6 Spectral Flow for Families of Dirac Type Operators -- 6.1 Statement of the Problem -- 6.2 Simple Example -- 6.3 Formula for the Spectral Flow -- 6.4 Computation of the Spectral Flow for a Graphene Sheet -- Bibliography
- Control code
- 978-3-0348-0510-0
- Dimensions
- unknown
- Extent
- VIII, 117 pages 38 illustrations, 1 illustrations in color.
- File format
- multiple file formats
- Form of item
- electronic
- Governing access note
- Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
- Isbn
- 9783034805100
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia.
- Media type code
-
- c
- Other control number
- 10.1007/978-3-0348-0510-0
- Other physical details
- online resource.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)1086520846
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/portal/The-Localization-Problem-in-Index-Theory-of/6d5VX1bWEt0/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/The-Localization-Problem-in-Index-Theory-of/6d5VX1bWEt0/">The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/portal/The-Localization-Problem-in-Index-Theory-of/6d5VX1bWEt0/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/The-Localization-Problem-in-Index-Theory-of/6d5VX1bWEt0/">The Localization Problem in Index Theory of Elliptic Operators, by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>