The Resource Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones
Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones
Resource Information
The item Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.This item is available to borrow from 1 library branch.
Resource Information
The item Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.
This item is available to borrow from 1 library branch.
 Summary
 "This book demonstrates the utility of the computeraided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have daytoday variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible tradeoffs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"
 Language
 eng
 Extent
 xiv, 287 pages
 Contents

 1 A simple comparative experiment. 1.1 Key concepts. 1.2 The setup of a comparative experiment. 1.3 Summary. 2 An optimal screening experiment. 2.1 Key concepts. 2.2 Case: an extraction experiment. 2.2.1 Problem and design. 2.2.2 Data analysis. 2.3 Peek into the black box. 2.3.1 Maineffects models. 2.3.2 Models with twofactor interaction effects. 2.3.3 Factor scaling. 2.3.4 Ordinary least squares estimation. 2.3.5 Significance tests and statistical power calculations. 2.3.6 Variance inflation. 2.3.7 Aliasing. 2.3.8 Optimal design. 2.3.9 Generating optimal experimental designs. 2.3.10 The extraction experiment revisited. 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity. 2.4 Background reading. 2.4.1 Screening. 2.4.2 Algorithms for finding optimal designs. 2.5 Summary. 3 Adding runs to a screening experiment. 3.1 Key concepts. 3.2 Case: an augmented extraction experiment. 3.2.1 Problem and design. 3.2.2 Data analysis. 3.3 Peek into the black box. 3.3.1 Optimal selection of a followup design. 3.3.2 Design construction algorithm. 3.3.3 Foldover designs. 3.4 Background reading. 3.5 Summary. 4 A response surface design with a categorical factor. 4.1 Key concepts. 4.2 Case: a robust and optimal process experiment. 4.2.1 Problem and design. 4.2.2 Data analysis. 4.3 Peek into the black box. 4.3.1 Quadratic effects. 4.3.2 Dummy variables for multilevel categorical factors. 4.3.3 Computing Defficiencies. 4.3.4 Constructing Fraction of Design Space plots. 4.3.5 Calculating the average relative variance of prediction. 4.3.6 Computing Iefficiencies. 4.3.7 Ensuring the validity of inference based on ordinary least squares. 4.3.8 Design regions. 4.4 Background reading. 4.5 Summary. 5 A response surface design in an irregularly shaped design region. 5.1 Key concepts. 5.2 Case: the yield maximization experiment. 5.2.1 Problem and design. 5.2.2 Data analysis. 5.3 Peek into the black box. 5.3.1 Cubic factor effects. 5.3.2 Lackoffit test. 5.3.3 Incorporating factor constraints in the design construction algorithm. 5.4 Background reading. 5.5 Summary. 6 A "mixture" experiment with process variables. 6.1 Key concepts. 6.2 Case: the rolling mill experiment. 6.2.1 Problem and design. 6.2.2 Data analysis. 6.3 Peek into the black box. 6.3.1 The mixture constraint. 6.3.2 The effect of the mixture constraint on the model. 6.3.3 Commonly used models for data from mixture experiments. 6.3.4 Optimal designs for mixture experiments. 6.3.5 Design construction algorithms for mixture experiments. 6.4 Background reading. 6.5 Summary. 7 A response surface design in blocks. 7.1 Key concepts. 7.2 Case: the pastry dough experiment. 7.2.1 Problem and design. 7.2.2 Data analysis. 7.3 Peek into the black box. 7.3.1 Model. 7.3.2 Generalized least squares estimation. 7.3.3 Estimation of variance components. 7.3.4 Significance tests. 7.3.5 Optimal design of blocked experiments. 7.3.6 Orthogonal blocking. 7.3.7 Optimal versus orthogonal blocking. 7.4 Background reading. 7.5 Summary. 8 A screening experiment in blocks. 8.1 Key concepts. 8.2 Case: the stability improvement experiment. 8.2.1 Problem and design. 8.2.2 Afterthoughts about the design problem. 8.2.3 Data analysis. 8.3 Peek into the black box. 8.3.1 Models involving block effects. 8.3.2 Fixed block effects. 8.4 Background reading. 8.5 Summary. 9 Experimental design in the presence of covariates. 9.1 Key concepts. 9.2 Case: the polypropylene experiment. 9.2.1 Problem and design. 9.2.2 Data analysis. 9.3 Peek into the black box. 9.3.1 Covariates or concomitant variables. 9.3.2 Models and design criteria in the presence of covariates. 9.3.3 Designs robust to time trends. 9.3.4 Design construction algorithms. 9.3.5 To randomize or not to randomize. 9.3.6 Final thoughts. 9.4 Background reading. 9.5 Summary. 10 A splitplot design. 10.1 Key concepts. 10.2 Case: the wind tunnel experiment. 10.2.1 Problem and design. 10.2.2 Data analysis. 10.3 Peek into the black box. 10.3.1 Splitplot terminology. 10.3.2 Model. 10.3.3 Inference from a splitplot design. 10.3.4 Disguises of a splitplot design. 10.3.5 Required number of whole plots and runs. 10.3.6 Optimal design of splitplot experiments. 10.3.7 A design construction algorithm for optimal splitplot designs. 10.3.8 Difficulties when analyzing data from splitplot experiments. 10.4 Background reading. 10.5 Summary. 11 A twoway splitplot design. 11.1 Key concepts. 11.2 Case: the battery cell experiment. 11.2.1 Problem and design. 11.2.2 Data analysis. 11.3 Peek into the black box. 11.3.1 The twoway splitplot model. 11.3.2 Generalized least squares estimation. 11.3.3 Optimal design of twoway splitplot experiments. 11.3.4 A design construction algorithm for Doptimal twoway splitplot designs. 11.3.5 Extensions and related designs. 11.4 Background reading. 11.5 Summary. Bibliography
 Isbn
 9780470744611
 Label
 Optimal design of experiments : a case study approach
 Title
 Optimal design of experiments
 Title remainder
 a case study approach
 Statement of responsibility
 Peter Goos and Bradley Jones
 Language
 eng
 Summary
 "This book demonstrates the utility of the computeraided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have daytoday variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible tradeoffs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"
 Assigning source
 Provided by publisher
 Cataloging source
 DLC
 http://library.link/vocab/creatorName
 Goos, Peter
 Index
 index present
 Literary form
 non fiction
 Nature of contents
 bibliography
 http://library.link/vocab/relatedWorkOrContributorName
 Jones, Bradley
 http://library.link/vocab/subjectName

 Industrial engineering
 Experimental design
 Industrial engineering
 Label
 Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones
 Bibliography note
 Includes bibliographical references (pages [277]282) and index
 Carrier category
 volume
 Carrier category code
 nc
 Carrier MARC source
 rdacarrier.
 Content category
 text
 Content type code
 txt
 Content type MARC source
 rdacontent.
 Contents
 1 A simple comparative experiment. 1.1 Key concepts. 1.2 The setup of a comparative experiment. 1.3 Summary. 2 An optimal screening experiment. 2.1 Key concepts. 2.2 Case: an extraction experiment. 2.2.1 Problem and design. 2.2.2 Data analysis. 2.3 Peek into the black box. 2.3.1 Maineffects models. 2.3.2 Models with twofactor interaction effects. 2.3.3 Factor scaling. 2.3.4 Ordinary least squares estimation. 2.3.5 Significance tests and statistical power calculations. 2.3.6 Variance inflation. 2.3.7 Aliasing. 2.3.8 Optimal design. 2.3.9 Generating optimal experimental designs. 2.3.10 The extraction experiment revisited. 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity. 2.4 Background reading. 2.4.1 Screening. 2.4.2 Algorithms for finding optimal designs. 2.5 Summary. 3 Adding runs to a screening experiment. 3.1 Key concepts. 3.2 Case: an augmented extraction experiment. 3.2.1 Problem and design. 3.2.2 Data analysis. 3.3 Peek into the black box. 3.3.1 Optimal selection of a followup design. 3.3.2 Design construction algorithm. 3.3.3 Foldover designs. 3.4 Background reading. 3.5 Summary. 4 A response surface design with a categorical factor. 4.1 Key concepts. 4.2 Case: a robust and optimal process experiment. 4.2.1 Problem and design. 4.2.2 Data analysis. 4.3 Peek into the black box. 4.3.1 Quadratic effects. 4.3.2 Dummy variables for multilevel categorical factors. 4.3.3 Computing Defficiencies. 4.3.4 Constructing Fraction of Design Space plots. 4.3.5 Calculating the average relative variance of prediction. 4.3.6 Computing Iefficiencies. 4.3.7 Ensuring the validity of inference based on ordinary least squares. 4.3.8 Design regions. 4.4 Background reading. 4.5 Summary. 5 A response surface design in an irregularly shaped design region. 5.1 Key concepts. 5.2 Case: the yield maximization experiment. 5.2.1 Problem and design. 5.2.2 Data analysis. 5.3 Peek into the black box. 5.3.1 Cubic factor effects. 5.3.2 Lackoffit test. 5.3.3 Incorporating factor constraints in the design construction algorithm. 5.4 Background reading. 5.5 Summary. 6 A "mixture" experiment with process variables. 6.1 Key concepts. 6.2 Case: the rolling mill experiment. 6.2.1 Problem and design. 6.2.2 Data analysis. 6.3 Peek into the black box. 6.3.1 The mixture constraint. 6.3.2 The effect of the mixture constraint on the model. 6.3.3 Commonly used models for data from mixture experiments. 6.3.4 Optimal designs for mixture experiments. 6.3.5 Design construction algorithms for mixture experiments. 6.4 Background reading. 6.5 Summary. 7 A response surface design in blocks. 7.1 Key concepts. 7.2 Case: the pastry dough experiment. 7.2.1 Problem and design. 7.2.2 Data analysis. 7.3 Peek into the black box. 7.3.1 Model. 7.3.2 Generalized least squares estimation. 7.3.3 Estimation of variance components. 7.3.4 Significance tests. 7.3.5 Optimal design of blocked experiments. 7.3.6 Orthogonal blocking. 7.3.7 Optimal versus orthogonal blocking. 7.4 Background reading. 7.5 Summary. 8 A screening experiment in blocks. 8.1 Key concepts. 8.2 Case: the stability improvement experiment. 8.2.1 Problem and design. 8.2.2 Afterthoughts about the design problem. 8.2.3 Data analysis. 8.3 Peek into the black box. 8.3.1 Models involving block effects. 8.3.2 Fixed block effects. 8.4 Background reading. 8.5 Summary. 9 Experimental design in the presence of covariates. 9.1 Key concepts. 9.2 Case: the polypropylene experiment. 9.2.1 Problem and design. 9.2.2 Data analysis. 9.3 Peek into the black box. 9.3.1 Covariates or concomitant variables. 9.3.2 Models and design criteria in the presence of covariates. 9.3.3 Designs robust to time trends. 9.3.4 Design construction algorithms. 9.3.5 To randomize or not to randomize. 9.3.6 Final thoughts. 9.4 Background reading. 9.5 Summary. 10 A splitplot design. 10.1 Key concepts. 10.2 Case: the wind tunnel experiment. 10.2.1 Problem and design. 10.2.2 Data analysis. 10.3 Peek into the black box. 10.3.1 Splitplot terminology. 10.3.2 Model. 10.3.3 Inference from a splitplot design. 10.3.4 Disguises of a splitplot design. 10.3.5 Required number of whole plots and runs. 10.3.6 Optimal design of splitplot experiments. 10.3.7 A design construction algorithm for optimal splitplot designs. 10.3.8 Difficulties when analyzing data from splitplot experiments. 10.4 Background reading. 10.5 Summary. 11 A twoway splitplot design. 11.1 Key concepts. 11.2 Case: the battery cell experiment. 11.2.1 Problem and design. 11.2.2 Data analysis. 11.3 Peek into the black box. 11.3.1 The twoway splitplot model. 11.3.2 Generalized least squares estimation. 11.3.3 Optimal design of twoway splitplot experiments. 11.3.4 A design construction algorithm for Doptimal twoway splitplot designs. 11.3.5 Extensions and related designs. 11.4 Background reading. 11.5 Summary. Bibliography
 Control code
 FIEb17531603
 Dimensions
 24 cm.
 Extent
 xiv, 287 pages
 Isbn
 9780470744611
 Media category
 unmediated
 Media MARC source
 rdamedia.
 Media type code
 n
 Other physical details
 illustrations
 System control number
 (OCoLC)707247960
 Label
 Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones
 Bibliography note
 Includes bibliographical references (pages [277]282) and index
 Carrier category
 volume
 Carrier category code
 nc
 Carrier MARC source
 rdacarrier.
 Content category
 text
 Content type code
 txt
 Content type MARC source
 rdacontent.
 Contents
 1 A simple comparative experiment. 1.1 Key concepts. 1.2 The setup of a comparative experiment. 1.3 Summary. 2 An optimal screening experiment. 2.1 Key concepts. 2.2 Case: an extraction experiment. 2.2.1 Problem and design. 2.2.2 Data analysis. 2.3 Peek into the black box. 2.3.1 Maineffects models. 2.3.2 Models with twofactor interaction effects. 2.3.3 Factor scaling. 2.3.4 Ordinary least squares estimation. 2.3.5 Significance tests and statistical power calculations. 2.3.6 Variance inflation. 2.3.7 Aliasing. 2.3.8 Optimal design. 2.3.9 Generating optimal experimental designs. 2.3.10 The extraction experiment revisited. 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity. 2.4 Background reading. 2.4.1 Screening. 2.4.2 Algorithms for finding optimal designs. 2.5 Summary. 3 Adding runs to a screening experiment. 3.1 Key concepts. 3.2 Case: an augmented extraction experiment. 3.2.1 Problem and design. 3.2.2 Data analysis. 3.3 Peek into the black box. 3.3.1 Optimal selection of a followup design. 3.3.2 Design construction algorithm. 3.3.3 Foldover designs. 3.4 Background reading. 3.5 Summary. 4 A response surface design with a categorical factor. 4.1 Key concepts. 4.2 Case: a robust and optimal process experiment. 4.2.1 Problem and design. 4.2.2 Data analysis. 4.3 Peek into the black box. 4.3.1 Quadratic effects. 4.3.2 Dummy variables for multilevel categorical factors. 4.3.3 Computing Defficiencies. 4.3.4 Constructing Fraction of Design Space plots. 4.3.5 Calculating the average relative variance of prediction. 4.3.6 Computing Iefficiencies. 4.3.7 Ensuring the validity of inference based on ordinary least squares. 4.3.8 Design regions. 4.4 Background reading. 4.5 Summary. 5 A response surface design in an irregularly shaped design region. 5.1 Key concepts. 5.2 Case: the yield maximization experiment. 5.2.1 Problem and design. 5.2.2 Data analysis. 5.3 Peek into the black box. 5.3.1 Cubic factor effects. 5.3.2 Lackoffit test. 5.3.3 Incorporating factor constraints in the design construction algorithm. 5.4 Background reading. 5.5 Summary. 6 A "mixture" experiment with process variables. 6.1 Key concepts. 6.2 Case: the rolling mill experiment. 6.2.1 Problem and design. 6.2.2 Data analysis. 6.3 Peek into the black box. 6.3.1 The mixture constraint. 6.3.2 The effect of the mixture constraint on the model. 6.3.3 Commonly used models for data from mixture experiments. 6.3.4 Optimal designs for mixture experiments. 6.3.5 Design construction algorithms for mixture experiments. 6.4 Background reading. 6.5 Summary. 7 A response surface design in blocks. 7.1 Key concepts. 7.2 Case: the pastry dough experiment. 7.2.1 Problem and design. 7.2.2 Data analysis. 7.3 Peek into the black box. 7.3.1 Model. 7.3.2 Generalized least squares estimation. 7.3.3 Estimation of variance components. 7.3.4 Significance tests. 7.3.5 Optimal design of blocked experiments. 7.3.6 Orthogonal blocking. 7.3.7 Optimal versus orthogonal blocking. 7.4 Background reading. 7.5 Summary. 8 A screening experiment in blocks. 8.1 Key concepts. 8.2 Case: the stability improvement experiment. 8.2.1 Problem and design. 8.2.2 Afterthoughts about the design problem. 8.2.3 Data analysis. 8.3 Peek into the black box. 8.3.1 Models involving block effects. 8.3.2 Fixed block effects. 8.4 Background reading. 8.5 Summary. 9 Experimental design in the presence of covariates. 9.1 Key concepts. 9.2 Case: the polypropylene experiment. 9.2.1 Problem and design. 9.2.2 Data analysis. 9.3 Peek into the black box. 9.3.1 Covariates or concomitant variables. 9.3.2 Models and design criteria in the presence of covariates. 9.3.3 Designs robust to time trends. 9.3.4 Design construction algorithms. 9.3.5 To randomize or not to randomize. 9.3.6 Final thoughts. 9.4 Background reading. 9.5 Summary. 10 A splitplot design. 10.1 Key concepts. 10.2 Case: the wind tunnel experiment. 10.2.1 Problem and design. 10.2.2 Data analysis. 10.3 Peek into the black box. 10.3.1 Splitplot terminology. 10.3.2 Model. 10.3.3 Inference from a splitplot design. 10.3.4 Disguises of a splitplot design. 10.3.5 Required number of whole plots and runs. 10.3.6 Optimal design of splitplot experiments. 10.3.7 A design construction algorithm for optimal splitplot designs. 10.3.8 Difficulties when analyzing data from splitplot experiments. 10.4 Background reading. 10.5 Summary. 11 A twoway splitplot design. 11.1 Key concepts. 11.2 Case: the battery cell experiment. 11.2.1 Problem and design. 11.2.2 Data analysis. 11.3 Peek into the black box. 11.3.1 The twoway splitplot model. 11.3.2 Generalized least squares estimation. 11.3.3 Optimal design of twoway splitplot experiments. 11.3.4 A design construction algorithm for Doptimal twoway splitplot designs. 11.3.5 Extensions and related designs. 11.4 Background reading. 11.5 Summary. Bibliography
 Control code
 FIEb17531603
 Dimensions
 24 cm.
 Extent
 xiv, 287 pages
 Isbn
 9780470744611
 Media category
 unmediated
 Media MARC source
 rdamedia.
 Media type code
 n
 Other physical details
 illustrations
 System control number
 (OCoLC)707247960
Library Links
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.eui.eu/portal/Optimaldesignofexperimentsacasestudy/ft4WzM2l4Uk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/Optimaldesignofexperimentsacasestudy/ft4WzM2l4Uk/">Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Item Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.library.eui.eu/portal/Optimaldesignofexperimentsacasestudy/ft4WzM2l4Uk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/Optimaldesignofexperimentsacasestudy/ft4WzM2l4Uk/">Optimal design of experiments : a case study approach, Peter Goos and Bradley Jones</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>