The Resource Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Resource Information
The item Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.This item is available to borrow from 1 library branch.
Resource Information
The item Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in European University Institute.
This item is available to borrow from 1 library branch.
- Summary
- This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings--
- Language
- eng
- Extent
- XIV, 337 pages
- Contents
-
- Cohomological Theory of Crystals over Function Fields and Applications
- On Geometric Iwasawa Theory and Special Values of Zeta Functions
- The Ongoing Binomial Revolution
- Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields
- Curves and Jacobians over Function Fields
- Isbn
- 9783034808538
- Label
- Arithmetic Geometry over Global Function Fields
- Title
- Arithmetic Geometry over Global Function Fields
- Statement of responsibility
- by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan
- Language
- eng
- Summary
- This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings--
- Assigning source
- Provided by Publisher
- http://library.link/vocab/creatorName
- Böckle, Gebhard
- Image bit depth
- 0
- Literary form
- non fiction
- http://library.link/vocab/relatedWorkOrContributorName
-
- Burns, David.
- Goss, David.
- Thakur, Dinesh.
- Trihan, Fabien.
- Ulmer, Douglas.
- Bars, Francesc.
- Longhi, Ignazio.
- Trihan, Fabien.
- SpringerLink (Online service)
- Series statement
- Advanced Courses in Mathematics - CRM Barcelona,
- http://library.link/vocab/subjectName
-
- Mathematics
- Algebraic geometry
- Algebra
- Number theory
- Label
- Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier.
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent.
- Contents
- Cohomological Theory of Crystals over Function Fields and Applications -- On Geometric Iwasawa Theory and Special Values of Zeta Functions -- The Ongoing Binomial Revolution -- Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields -- Curves and Jacobians over Function Fields
- Control code
- 978-3-0348-0853-8
- Dimensions
- unknown
- Extent
- XIV, 337 pages
- File format
- multiple file formats
- Form of item
- electronic
- Governing access note
- Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
- Isbn
- 9783034808538
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia.
- Media type code
-
- c
- Other control number
- 10.1007/978-3-0348-0853-8
- Other physical details
- 1 online resource.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)1022030828
- Label
- Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier.
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent.
- Contents
- Cohomological Theory of Crystals over Function Fields and Applications -- On Geometric Iwasawa Theory and Special Values of Zeta Functions -- The Ongoing Binomial Revolution -- Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields -- Curves and Jacobians over Function Fields
- Control code
- 978-3-0348-0853-8
- Dimensions
- unknown
- Extent
- XIV, 337 pages
- File format
- multiple file formats
- Form of item
- electronic
- Governing access note
- Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
- Isbn
- 9783034808538
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia.
- Media type code
-
- c
- Other control number
- 10.1007/978-3-0348-0853-8
- Other physical details
- 1 online resource.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- System control number
- (OCoLC)1022030828
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/portal/Arithmetic-Geometry-over-Global-Function-Fields/IH3ftUYQAm4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/Arithmetic-Geometry-over-Global-Function-Fields/IH3ftUYQAm4/">Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.eui.eu/portal/Arithmetic-Geometry-over-Global-Function-Fields/IH3ftUYQAm4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.eui.eu/portal/Arithmetic-Geometry-over-Global-Function-Fields/IH3ftUYQAm4/">Arithmetic Geometry over Global Function Fields, by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer ; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan, (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.library.eui.eu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.eui.eu/">European University Institute</a></span></span></span></span></div>