Coverart for item
The Resource Advances in Summability and Approximation Theory, edited by S. A. Mohiuddine, Tuncer Acar, (electronic resource)

Advances in Summability and Approximation Theory, edited by S. A. Mohiuddine, Tuncer Acar, (electronic resource)

Label
Advances in Summability and Approximation Theory
Title
Advances in Summability and Approximation Theory
Statement of responsibility
edited by S. A. Mohiuddine, Tuncer Acar
Contributor
Editor
Subject
Language
eng
Summary
This book discusses the Tauberian conditions under which convergence follows from statistical summability, various linear positive operators, Urysohn-type nonlinear Bernstein operators and also presents the use of Banach sequence spaces in the theory of infinite systems of differential equations. It also includes the generalization of linear positive operators in post-quantum calculus, which is one of the currently active areas of research in approximation theory. Presenting original papers by internationally recognized authors, the book is of interest to a wide range of mathematicians whose research areas include summability and approximation theory. One of the most active areas of research in summability theory is the concept of statistical convergence, which is a generalization of the familiar and widely investigated concept of convergence of real and complex sequences, and it has been used in Fourier analysis, probability theory, approximation theory and in other branches of mathematics. The theory of approximation deals with how functions can best be approximated with simpler functions. In the study of approximation of functions by linear positive operators, Bernstein polynomials play a highly significant role due to their simple and useful structure. And, during the last few decades, different types of research have been dedicated to improving the rate of convergence and decreasing the error of approximation.--
Assigning source
Provided by publisher
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • Acar, Tuncer
  • Mohiuddine, S. A
Series statement
  • Springer eBooks
  • Springer eBooks.
http://library.link/vocab/subjectName
  • Functional analysis
  • Mathematics
  • Sequences (Mathematics)
Label
Advances in Summability and Approximation Theory, edited by S. A. Mohiuddine, Tuncer Acar, (electronic resource)
Link
http://ezproxy.eui.eu/login?url=https://doi.org/10.1007/978-981-13-3077-3
Instantiates
Publication
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Chapter 1. A Survey for Paranormed Sequence Spaces Generated by Infinite Matrices -- Chapter 2. Tauberian Conditions under which Convergence Follows from Statistical Summability by Weighted Means -- Chapter 3. Applications of Fixed Point Theorems and General Convergence in Orthogonal Metric Spaces -- Chapter 4. Application of Measure of Noncompactness to the Infinite Systems of Second-Order Differential Equations in Banach Sequence Spaces c, lp and c0β -- Chapter 5. Infinite Systems of Differential Equations in Banach Spaces Constructed by Fibonacci Numbers -- Chapter 6. Convergence Properties of Genuine Bernstein-Durrmeyer Operators -- Chapter 7. Bivariate Szasz Type Operators Based on Multiple Appell Polynomials -- Chapter 8. Approximation Properties of Chlodowsky Variant of (P, Q) SzAsz–Mirakyan–Stancu Operators -- Chapter 9. Approximation Theorems for Positive Linear Operators Associated with Hermite and Laguerre Polynomials -- Chapter 10. On Generalized Picard Integral Operators -- Chapter 11. From Uniform to Statistical Convergence of Binomial-Type Operators -- Chapter 12. Weighted Statistically Uniform Convergence of Bögel Continuous Functions by Positive Linear Operators -- Chapter 13. Optimal Linear Approximation under General Statistical Convergence -- Chapter 14. Statistical Deferred Cesaro Summability Mean Based on (p, q)-Integers with Application to Approximation Theorems -- Chapter 15. Approximation Results for an Urysohn-type Nonlinear Bernstein Operators
Control code
978-981-13-3077-3
Dimensions
unknown
Extent
1 online resource (XIII, 241 pages)
Form of item
  • online
  • electronic
Governing access note
Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
Isbn
9789811330773
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
10 illustrations, 9 illustrations in color.
Specific material designation
remote
System control number
(OCoLC)1081000232
Label
Advances in Summability and Approximation Theory, edited by S. A. Mohiuddine, Tuncer Acar, (electronic resource)
Link
http://ezproxy.eui.eu/login?url=https://doi.org/10.1007/978-981-13-3077-3
Publication
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Chapter 1. A Survey for Paranormed Sequence Spaces Generated by Infinite Matrices -- Chapter 2. Tauberian Conditions under which Convergence Follows from Statistical Summability by Weighted Means -- Chapter 3. Applications of Fixed Point Theorems and General Convergence in Orthogonal Metric Spaces -- Chapter 4. Application of Measure of Noncompactness to the Infinite Systems of Second-Order Differential Equations in Banach Sequence Spaces c, lp and c0β -- Chapter 5. Infinite Systems of Differential Equations in Banach Spaces Constructed by Fibonacci Numbers -- Chapter 6. Convergence Properties of Genuine Bernstein-Durrmeyer Operators -- Chapter 7. Bivariate Szasz Type Operators Based on Multiple Appell Polynomials -- Chapter 8. Approximation Properties of Chlodowsky Variant of (P, Q) SzAsz–Mirakyan–Stancu Operators -- Chapter 9. Approximation Theorems for Positive Linear Operators Associated with Hermite and Laguerre Polynomials -- Chapter 10. On Generalized Picard Integral Operators -- Chapter 11. From Uniform to Statistical Convergence of Binomial-Type Operators -- Chapter 12. Weighted Statistically Uniform Convergence of Bögel Continuous Functions by Positive Linear Operators -- Chapter 13. Optimal Linear Approximation under General Statistical Convergence -- Chapter 14. Statistical Deferred Cesaro Summability Mean Based on (p, q)-Integers with Application to Approximation Theorems -- Chapter 15. Approximation Results for an Urysohn-type Nonlinear Bernstein Operators
Control code
978-981-13-3077-3
Dimensions
unknown
Extent
1 online resource (XIII, 241 pages)
Form of item
  • online
  • electronic
Governing access note
Use of this electronic resource may be governed by a license agreement which restricts use to the European University Institute community. Each user is responsible for limiting use to individual, non-commercial purposes, without systematically downloading, distributing, or retaining substantial portions of information, provided that all copyright and other proprietary notices contained on the materials are retained. The use of software, including scripts, agents, or robots, is generally prohibited and may result in the loss of access to these resources for the entire European University Institute community
Isbn
9789811330773
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
10 illustrations, 9 illustrations in color.
Specific material designation
remote
System control number
(OCoLC)1081000232

Library Locations

    • Badia FiesolanaBorrow it
      Via dei Roccettini 9, San Domenico di Fiesole, 50014, IT
      43.803074 11.283055
Processing Feedback ...